The Anti-sigma Factor RsiV Is a Bacterial Receptor for Lysozyme: Co-crystal Structure Determination and Demonstration That Binding of Lysozyme to RsiV Is Required for σV Activation

نویسندگان

  • Jessica L Hastie
  • Kyle B Williams
  • Lindsey L Bohr
  • Jon C Houtman
  • Lokesh Gakhar
  • Craig D Ellermeier
چکیده

σ factors provide RNA polymerase with promoter specificity in bacteria. Some σ factors require activation in order to interact with RNA polymerase and transcribe target genes. The Extra-Cytoplasmic Function (ECF) σ factor, σV, is encoded by several Gram-positive bacteria and is specifically activated by lysozyme. This activation requires the proteolytic destruction of the anti-σ factor RsiV via a process of regulated intramembrane proteolysis (RIP). In many cases proteases that cleave at site-1 are thought to directly sense a signal and initiate the RIP process. We previously suggested binding of lysozyme to RsiV initiated the proteolytic destruction of RsiV and activation of σV. Here we determined the X-ray crystal structure of the RsiV-lysozyme complex at 2.3 Å which revealed that RsiV and lysozyme make extensive contacts. We constructed RsiV mutants with altered abilities to bind lysozyme. We find that mutants that are unable to bind lysozyme block site-1 cleavage of RsiV and σV activation in response to lysozyme. Taken together these data demonstrate that RsiV is a receptor for lysozyme and binding of RsiV to lysozyme is required for σV activation. In addition, the co-structure revealed that RsiV binds to the lysozyme active site pocket. We provide evidence that in addition to acting as a sensor for the presence of lysozyme, RsiV also inhibits lysozyme activity. Thus we have demonstrated that RsiV is a protein with multiple functions. RsiV inhibits σV activity in the absence of lysozyme, RsiV binds lysozyme triggering σV activation and RsiV inhibits the enzymatic activity of lysozyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence of a Bacterial Receptor for Lysozyme: Binding of Lysozyme to the Anti-σ Factor RsiV Controls Activation of the ECF σ Factor σV

σ factors endow RNA polymerase with promoter specificity in bacteria. Extra-Cytoplasmic Function (ECF) σ factors represent the largest and most diverse family of σ factors. Most ECF σ factors must be activated in response to an external signal. One mechanism of activation is the stepwise proteolytic destruction of an anti-σ factor via Regulated Intramembrane Proteolysis (RIP). In most cases, th...

متن کامل

Evidence of a Bacterial Receptor for Lysozyme: Binding of Lysozyme to the Anti-s Factor RsiV Controls Activation of the ECF s Factor s

s factors endow RNA polymerase with promoter specificity in bacteria. Extra-Cytoplasmic Function (ECF) s factors represent the largest and most diverse family of s factors. Most ECF s factors must be activated in response to an external signal. One mechanism of activation is the stepwise proteolytic destruction of an anti-s factor via Regulated Intramembrane Proteolysis (RIP). In most cases, th...

متن کامل

Eep confers lysozyme resistance to enterococcus faecalis via the activation of the extracytoplasmic function sigma factor SigV.

Enterococcus faecalis is a commensal bacterium found in the gastrointestinal tract of most mammals, including humans, and is one of the leading causes of nosocomial infections. One of the hallmarks of E. faecalis pathogenesis is its unusual ability to tolerate high concentrations of lysozyme, which is an important innate immune component of the host. Previous studies have shown that the presenc...

متن کامل

Refolding of Lysozyme Upon Interaction with ?-Cyclodextrin

Effects of ?-cyclodextrin, ?CD, on refolding of lysozyme was investigated at pH 12 employing isothermal titration calorimetry (ITC) at 300K in 30mM Tris buffer solution. ?CD was employed as an anti-aggregation agent and the heats obtained for lysozyme+?CD interactions are reported and analyzed in terms of the extended solvation model. It was indicated that there are two sets of identical and no...

متن کامل

Preparing Poly (Lactic-co-Glycolic Acid) (PLGA) Microspheres Containing Lysozyme-Zinc Precipitate Using a Modified Double Emulsion Method

Lysozyme, as a model protein, was precipitated through the formation of protein-Zn complex to micronize for subsequent encapsulation within poly (lactic-co-glycolic acid) (PLGA) microspheres. Various parameters, including pH, type and concentration of added salts and protein concentration, were modified to optimize the yield of protein complexation and precipitation. The resulting protein parti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016